

Subscriber access provided by ISTANBUL TEKNIK UNIV

C-nmr Assignments for Cystoseira Meroditerpenoids

Vincenzo Amico, Mario Piattelli, Placido Neri, and Mario Recupero

J. Nat. Prod., 1991, 54 (3), 877-881• DOI: 10.1021/np50075a024 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 3, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50075a024 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

¹³C-NMR ASSIGNMENTS FOR *CYSTOSEIRA* MERODITERPENOIDS

VINCENZO AMICO,* MARIO PIATTELLI,

Dipartimento di Scienze Chimiche dell'Università di Catania

PLACIDO NERI,* and MARIO RECUPERO

Istituto del C.N.R. per lo Studio delle Sostanze Naturali di Interesse Alimentare e Chimico-farmaceutico, viale A. Doria 6, 95125 Catania, Italy

ABSTRACT.—The ¹³C-nmr chemical shifts of six meroditerpenoids from *Cystoseira* species were completely assigned by the application of homonuclear and heteronuclear 2D nmr experiments.

In the past 10 years or so a host of meroditerpenoids have been isolated from brown algae of the genera Cystoseira, Cystophora, Halidrys, and Bifurcaria (1-5). In many cases the original ¹³C-nmr assignments of these compounds were made before the introduction of 2D nmr techniques, and we have now used these new methods to obtain the complete ¹³C-nmr assignments for some of these algal metabolites 1-6 that were available from previous work.

The ¹³C-nmr assignments (Table 1) for compounds 1 and 2, previously isolated from *Cystoseira sauvageauana* (6),

followed from a combination of the ¹H assignments (Table 2), and were definitely confirmed by COSY experiments and data from ¹H-¹³C correlations. The protonated carbons were straightforwardly identified by one-bond ¹H-¹³C correlation, while long-range HETCOR spectra permitted the assignment of the quaternary carbons.

Spectral reexamination of cystalgerone [3], a metabolite from Cystoseira algeriensis (7,8) and Cystoseira platyramosa (9), revealed that, while the ¹H spectrum was identical to that previously reported, the same did not hold

true for the ¹³C spectrum, which showed slight but clear differences. Presumably the original metabolite had undergone some structural change during or prior to determination of the spectrum, possibly due to the acidity of the solvent

 $(CHCl_3)$. To test this conjecture, **3** was treated with acid, and in a few hours compound **4** was obtained in almost quantitative yield. Its ¹³C-nmr spectrum was identical to that reported (7). A thorough examination of the spectral

Carbon			Com	ound		
	1	2	3	4	5	6
C-1	27.9 t	28.2 t	28.3 t	28.6 t	28.7 t	28.6 t
С-2	127.7 d	128.2 d	126.2 d	40.1 t	128.3 d	127.8 d
C-3	130.7 s	131.0s	132.5 s	138.3 s	130.4 s	131.1s
C-4	55.1 t	55.7 t	45.1t	125.2 d	55.9 t	56.6 t
C-5	199.4 s	200.3 s	154.6s	154.0s	209.7 s	209.6s
С-6	123.6 d	122.6d	41.3 t	42.5 t	48.3 t	46.4 t
C-7	159.8 s	159.2 s	44.4 s	44.6s	46.1s	46.9 s
C-8	33.6 t	41.2 t	34.8 t	34.8 t	36.6 t	36.6 t
С-9	25.6 t	25.1t	18.7 t	18.8 t	19.5 t	20.0 t
C-10	33.0 t	32.5 t	29.2 t	29.2 t	33.6t	34.2 t
C-11	46.2 d	46.2 d	54.8 s	54.9 s	60.8 s	60.2 s
C-12	216.1 s	216.4 s	208.1 s	208.5 s	216.7 s	205.9 s
C-13	35.7 t	36.2 t	131.8s	131. 5 s	36.0 t	122.6 d
C-14	36.7 t	36.6 t	38.9 t	40.2 t	36.7 t	153.6 d
C-15	70.5 s	70.7 s	71.0 s	70.9 s	70.1s	71.2 s
C-16	29.3 q	29.5 q	29.4 q	28.9 q	29.6 q	29.3 q
C-17	29.0 q	29.3 q	30.2 q	30.8 g	29.6 q	29.3 q
C-18	16.6 q	16.5 q	20.9 q	21.0 q	21.4 q	20.2 q
C-19	25.4 q	19.4 q	22.4 q	22.5 q	22.0 q	21.1q
C-20	16.6 q	16.5 q	16.2 q	18.0 q	16.7 q	16.2 q
C-1'	149.9 s	150.2 s	150.2 s	150.5 s	150.9 s	145.4 s
C-2'	134.3 s	134.8 s	134.5 s	135.0 s	134.0s	127.9 s
C-3'	113.8 d	114.7 d	112.5 d	112.8 d	113.0d	113.1 d
C-4'	152.4 s	152.2 s	155.4 s	155.4 s	156.0 s	149.8 s
C-5'	115.5 d	115.8d	113.7 d	113.7 d	114.4 d	115.4 d
C-6'	131.7 s	132.1s	131.7 s	131.8 s	132.4 s	125.8 d
6'-Me	16.1 q	16.3 q	16.3 q	16.4 q	16.4 q	16.3 g
1'-OMe	60.4q	60.6 q	60.3 q	60.5 q	60.6 q	
6'-OMe	—	-	55.2 g	55.3 q	55.6q	

TABLE 1. ¹³C-nmr Assignments for Compounds 1–6.^a

^{a 13}C-nmr spectra were recorded in CDCl₃ at 62.9 MHz and referenced to TMS; multiplicities were obtained by DEPT experiments; for each compound a ¹J HETCOR experiment and two long-range HET-COR spectra were performed with polarization transfer optimized for J = 5.0 and 10.0 Hz.

standard
s internal
, TMS a
, CDCJ
O MHz
1-6 (25
Compounds
H nmr of
TABLE 2.

Proton			0	ompound		
	1	2	3	4	5	6
Н-3′	6.50 AB(3)	6.49 bs	$6.52 \left\{ AB(3) \\ 6.57 \right\}$	6.55 AB(3)	6.56 AB(3) 6.59 AB(3)	6.40 AB (3)
H-1	3.36d(7)	3.36d(7.2)	3.37 d(7.3)	2.76 bt (7.8) 2.38 ht (7)	3.39 d(7.5) \$ 40+(7.5)	3.29 d (7)
H-4	3.12s	3.08 s	$\begin{cases} H_a 3.06d(14.5) \\ H_a 2.074014.5 \\ H$	5.77 s	3.11	3.00 bs
н-6	6.08 s	6.11s	$\begin{cases} H_{a} & 2.37 d (19.3) \\ H_{a} & 2.45 d (18.5) \\ H_{b} & 2.22 d (18.5) \end{cases}$	{H _a 2.53d(12.5) H _b 2.26d(12.5)	$\begin{cases} H_a 3.04d(15.5) \\ H_b 2.45d(15.5) \end{cases}$	$\left[\begin{array}{c} 2.44 \\ 2.30 \end{array} \right]$ AB (3)
н-в	2.49 ^b	2.06 ^b		1	1.60 ^b	2.23 ^b 1.45 ^b
н-9-т.	$1.37^{\rm b}$ 1.73 ^b	1.39 ^b 1.60 ^b		1.75 ^b	1.70 ^b 2.40 ^b	1.70 ^b
H-10	1.43 ^b	1.30 ^b		1.16 ^b	1.50 ^b	1.80 ^b 1.68 ^b
H-11	2.60 m	2.57 m				,
H-13	2.66 t (7.4) 1.75 t (7.2)	2.59t(7.4) 1.76t(7.2)	$\begin{cases} H_a & 2.74 d(14.5) \\ H_a & 2.47 d(14.5) \end{cases}$	H _a 2.47 d(10.4) H. 241 d(10.4)	2.59t(7.5) 1.65 ^b	6.59 AB(16)
Me-16	1.21s	1.23 s	1.13s	1.09s	1.26 s	1.28 s
Me-17	1.21s 1.06s	1.21s 1.07s	1.22 s 1.04 s	1.15s 1.01s	1.26s 1.06s	1.30s 1.14s
Me-19	1.84 s	2.09 s	0.81s	0.91s	0.94 s	1.15 s
Me-20	1.69s	1.71s	1.67s	1.665	1.74s	1.68s
1'-OMe	3.65 s	3.66s	3.68s	3.70s	3.68 s	3.68 s
4'-OMe			3.74s	3.75 s	3.74s	
*Coupling constants ^b Overlapped signals:	(<i>J</i> in parenthese assignments and	s) are given in d chemical shi	Hz. fts have been obtained	by one-bond ¹ H- ¹³ C cc	orrelation spectroscopy	

°.

properties of 4 with the use of 1D and 2D nmr techniques (for the ¹H-nmr spectrum see Table 2) revealed that cystalgerone had undergone an acidcatalyzed migration of the double bond from position 2 to position 3. The stereochemistry at the C-3 double bond in 4 was inferred as E on the basis of the chemical shift of the pertinent methyl in the ¹³C-nmr spectrum (18.0 ppm) (10).

The ¹³C-nmr spectrum of diketone 5, a metabolite from *C. algeriensis* (8), had been assigned on the basis of signal multiplicities and chemical shifts with reference to model compounds. A reexamination based on heteronuclear correlations, both one-bond and long-range, allowed us to assign all the resonances unambiguously (Table 1), rectifying some minor misassignments.

Bifurcarenone was originally isolated as a levorotatory oil from the brown alga *Bifurcaria galapagensis* (Cystoseiraceae) (11,12) and assigned structure **6** (apart from absolute stereochemistry). Work from our group on the Mediterranean species *Cystoseira stricta* (13) lead to the isolation of the enantiomer of (-)-bifurcarenone. Because none of the previous papers on this algal metabolite contains full details on the ¹³C-nmr spectrum, we have now made a complete assignment (Tables 1 and 2) with the help of DEPT and 2D nmr techniques.

EXPERIMENTAL

GENERAL METHODS.-Nmr spectra were recorded at room temperature (23°) on a Bruker AC-250 PFT nmr spectrometer, operating at 250.13 MHz for ¹H and 62.9 MHz for ¹³C and equipped with a 5 mm 1 H/ 13 C dual probe head. The spectra were obtained in CDCl₃ and referenced to TMS. DEPT experiments were performed setting variable pulse θ to 90° and 135°. COSY and ¹J HETCOR 2D spectra were obtained using the standard Bruker microprograms COSY.AU and XHCORRD.AU. The 2D longrange heterocorrelations were obtained using the Freeman-Morris pulse sequence modified with the insertion of a one-step low-pass J-filter and a BIRD pulse (14,15). For each compound two separate experiments were performed with the same τ (3.3 ms), and the polarization transfer

delay was optimized to observe J = 5.0 and 10.0 Hz long-range couplings.

ACID TREATMENT OF CYSTALGERONE [3] TO GIVE 4.—A solution of 3 (20 mg) in CHCl₃ (3 ml) was added to 0.3 ml of 1 M HCl, and the mixture was stirred for 4 h at room temperature. The organic layer was separated and evaporated to give a residue which was subjected to preparative layer chromatography [Kieselgel-60, iPrOH- C_6H_{12} (1:16)] to give pure 4 (18 mg).

COMPOUND 4.—Hreims $[M]^+$ 454.3088, calcd for C₂₉H₄₂O₄, 454.3082; $[\alpha]^{20}(\lambda)$ +77.3° (589), +81.9° (578), +93.7° (546), +146.1° (436); ir ν max (film) 3430, 1660, 1600 cm⁻¹; uv λ max (ErOH) 280 nm (ϵ = 7800), 222 (ϵ = 10300); ¹³C nmr see Table 1; ¹H nmr see Table 2.

ACKNOWLEDGMENTS

The work was financially supported by the Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST, Rome), and by the Consiglio Nazionale delle Ricerche (CNR, Rome) under the scheme "Progetto Finalizzato per la Chimica Fine e Secondaria."

LITERATURE CITED

- D.J. Faulkner, Nat. Prod. Rep., 1, 251 (1984).
- 2. D.J. Faulkner, Nat. Prod. Rep., 3, 1 (1986).
- 3. D.J. Faulkner, Nat. Prod. Rep., 4, 539 (1987).
- D.J. Faulkner, Nat. Prod. Rep., 5, 613 (1988).
- 5. D.J. Faulkner, Nat. Prod. Rep., 7, 269 (1990).
- V. Amico, F. Cunsolo, M. Piattelli, and G. Ruberto, *Phytochemistry*, 24, 2663 (1985).
- V. Amico, G. Oriente, M. Piattelli, and G. Ruberto, *Gazz. Chim. Ital.*, **114**, 169 (1984).
- V. Amico, F. Cunsolo, M. Piattelli, and G. Ruberto, *Phytochemistry*, 23, 2017 (1984).
- V. Amico, P. Neri, M. Piattelli, and G. Ruberto, J. Nat. Prod., 53, 517 (1990).
- E. Breitmaier and W. Voelter, "Carbon 13 NMR spectroscopy," VCH, Weinheim, 1987, pp. 327-337.
- H.H. Sun, N.M. Ferrara, O.J. McConnell, and W. Fenical, *Tetrahedron Lett.*, 21, 3123 (1980).
- 12. K. Mori and T. Uno, Tetrahedron, 45, 1945 (1989).
- V. Amico, G. Oriente, P. Neri, M. Piattelli, and G. Ruberto, *Phytochemistry*, 26, 1715 (1987).

 M. Salazar, A.S. Zektzer, and G.E. Martin, Magn. Reson. Chem., 26, 28 (1988).
V.V. Krishnamurthy and J.E. Casida, Magn. Reson. Chem., 26, 980 (1988).

Received 20 August 1990

881